

Dr. Palmer Fig. 4 synthetic data : Smooth inversion & 100 WET with Wavefront starting model :

Fig. 1 : left : *Trace*|*Shot gather*, right : *Refractor*|*Shot breaks*. Shows fit between picked times (solid colored curves, red crosses) and modeled times (dashed colored curves, blue crosses) obtained with 100 WET iterations (Fig. 6)

To create the profile database, import the data and browse the imported shots do these steps :

- File New Profile..., set File name to PALMFIG4 and click Save button
- in *Header* | *Profile* ... set *Line type* to Refraction spread/line . Set *Station spacing* to 5.0 m.
- check box Force grid cell size and set Cell size[m] to 0.5m. See Fig. 2.
- download & unzip palmfig4 ascii.zip with palmfig4.asc in directory C:\ray32\palmfig4\input
- select File Import Data ... and set Import data type to ASCII column format. See Fig. 3.
- leave Default spread type at 10: 360 channels
- click *Select button*, navigate into c:\ray32\palmfig4\input and select file palmfig4.asc
- set *Default sample count* to 1100 to setup the y scale for *Trace*|Shot gather & Refractor|Shot breaks
- click *Import shots button*. The *Import shot dialog* is shown for each shot in the .asc file.
- for each shot leave Layout start and Shot pos. at shown values and click Read button
- select Trace|Shot gather and Window|Tile to obtain Fig. 1

To configure WDVS, map traces to refractors, display the Wavefront model and run Smooth inversion :

- select Model WDVS Smoothing. Check box use WDVS for forward modeling of traveltimes.
- edit *WDVS frequency* to 300Hz and click *button OK*. See Fig. 10.
- uncheck WET Tomo|WET tomography Settings|Blank|Blank below envelope after last iteration
- select *Refractor*|Shot breaks. Click on Maximize icon in title bar of Shot breaks window.
- uncheck Mapping Automated updating of station V0
- select *Header*|*Station* and click button *Reset v0*. Confirm prompt.
- edit field v0 to 1,500 m/s and click button Interpolate v0 only. See Fig. 9.
- select shot no. 1 with F7/F8. Position vertical pick bar at station no. 3 with arrow-right key.
- press CTRL+F1 to pick branch point separating direct wave from first refractor for shot no. 1.
- select shot no. 2 with F7/F8. Position vertical pick bar at station no. 67 with arrow-left key.
- press CTRL+F1 to pick branch point separating direct wave from first refractor for shot no. 2.
- press ALT+L to map traces to refractors based on above branch points
- select *Depth*|*Wavefront* and confirm prompts to obtain Wavefront method depth section (Fig. 4)
- click Yes in Continue with WET tomography prompt. Confirm warning about too wide shot spacing.
- view resulting Smooth WET tomogram in Fig. 5 and WET coverage plot in Fig. 7.

Edit Profile	Import shots
Line ID Palmfig4	Import data type ASCII column format
Line type Refraction spread/line Date	Input directory : select one data file. All data files will be imported
Job ID Time	Select D:\ray32\palmfiq4\input\
Instrument Time of Processing	Take shot record number from Record number
Client	- Optionally adjust HDP batch file and shock Ratch impact
Company	HDR hatch
Observer Units meters	
Note Sort As acquired	Write .HDR batch file listing shots in input directory
- Const	Output .HDR
our in the second	Write .HDR only Import shots and write .HDR
Nie beinestel execute (%)	
Profile ctort affect [m]	Overwrite all O Prompt overwriting I limit offset
First receiver (station number)	Maximum offect imported (station nos 1
Add borehole lines for WET tomography	0.00 10: 360 channels
Borehole 1 line Select	Target Sample Format
Borehole 2 line Select	
Borehole 3 line Select	Turn around spread during import
Borehole 4 line Select	Correct picks for delay time (use e.g. for .PIK files)
	Default sample interval [msec] 0.100000000
OK Cancel Reset	Default sample count 1500
	Import shots Cancel import Reset import
Fig. 2 : Header Profile	Fig. 3 : File Import Data
Palmfig4 RMS error 4.2%=2.73ms initial WAVEMODL.GRD v. 4.01	
0 5 10 15 20 25 30 35 40 45 50 55 60 0 • • • • • • • • • • • • • • • • • •	
	- 5600 - 5100
	- 4600
-20-	- 4100
	- 3100
-40-	
	- 1600
-60	= 1100 = 600
0 50 100 150 200 250 300	0 350
Fig. 4 : select <i>Depth</i> <i>Wavefront</i> and confirm prompts to obtain	Wavefront method depth section.
0 5 10 15 20 25 30 35 40 45 50 55 60	65 20
	- 5600
	- 5100
-20- 2500	- 4600
3500 2500 43	- 3600
4	- 3100
-40-	- 2100
	- 1600
-60	600
0 50 100 150 200 250 300 Fig. 5 : Smooth inversion with Wavefront method starting mode	350 al shown in Fig. 4, WDVS anablad @300Hz (Fig. 10)
Derecke Palmer RMS error 0.4%=0.27ms 100 WET itr. 50Hz Width 5.0% initial WAVE	MODL.GRD v. 4.01
0 5 10 15 20 25 30 35 40 45 50 55 60	65 720
	- 5600
	- 4600
-20-	- 4100
33080	2500
	- 3100
-40-	
-40-	90 90 90 90 90 90 90 90 90 90 90 90 90 9
-40-	500 - 3100 - 2600 - 2100 - 1600 - 1100

Fig. 6 : 100 WET iterations, starting model Fig. 4, WDVS@300Hz. Minimal WET smoothing, smooth nth=5 (Fig. 11).

Fig. 7 : WET wavepath coverage plot obtained with Fig. 5. Unit is wavepaths per pixel.

Derecke Palmer RMS error 0.4%=0.27ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

Fig. 8 : WET wavepath coverage plot obtained with Fig. 6. Unit is wavepaths per pixel.

Edit Stations - browse with F7/F8	ſ	Edit WDVS (Zelt & Chen 2016)
Station position [station no.] Pos. 0.0		Edit parameters for wavelength-dependent velocity smoothing
x 0.0000		Image: Fast WDVS : less accurate mapping of scan line nodes to grid nodes WDVS frequency 300.00 [Hz]
z 0.0000		Angle increment between scan lines 7 [Degree]
Weathering velocity [m/sec.]		Regard nth node along scan line 3 [node]
v0 1500.0000 v0 from <u>CMP</u> <u>v</u> 0 from Shots		Parameters for Cosine-Squared weighting function (Chen and Zelt 2012) a : Cosine argument power 1.000 [power]
Reset v0 Correct breaks		b : Cosine-Squared power 1.000 [power]
Reset <u>c</u> oordinates and v0		Modify WET smoothing mode : discard after forward modeling
Interpolate coordinates and v0		C discard WET smoothing and WDVS smoothing after modeling
Correct <u>x</u> Correct <u>y</u>		discard WDVS smoothing only and restore WET smoothing
Interpolate v0 o <u>n</u> ly		OK Cancel Reset
Force interpolate coordinates		

Next we try to increase the resolution at top-of-basement by increasing the WET iteration count and minimizing WET smoothing :

- select WET Tomo|Interactive WET tomography
- edit Number of WET tomography iterations to 100 (Fig. 11)
- click button *Edit velocity smoothing*. Click radio button *Minimal smoothing*.
- set *Smooth nth iteration : n* = 5. Click button *Accept parameters*.
- click button Start tomography processing and confirm prompts to obtain Fig. 6
- compare Fig. 6 with Fig. 5. We got better resolution at top-of-basement but also slightly more artefacts both in overburden and in basement. We like the improved resolution.

Edit WET Wavepath Eikonal Traveltime Tomography Parameters	Edit WET Tomography Velocity Smoothing Parameters	
Specify initial velocity model Select D:\ray32\palmfig4\LAYRTOMO\WAVEMODL.GRD	Determination of smoothing filter dimensions G Full smoothing after each tomography iteration	
Stop WET inversion after Number of WET tomography iterations : 100 iterations	Minimal smoothing after each tomography iteration Manual specification of smoothing filter, see below	
or RMS error gets below 20 percent or RMS error does not improve for n = 20 iterations	Smoothing filter dimensions Half smoothing filter width : 3 columns	
or WET inversion runs longer than 100 minutes	Half smoothing filter height : 0 grid rows	
WET regularization settings Wavepath frequency : 50.00 Hz Iterate	Adapt shape of filter. Uncheck for better resolution.	
Ricker differentiation [-1:Gaussian,-2:Cosine] : -1 times Wavepath width [percent of one period] : 5.0 percent Iterate	Maximum relative velocity update after each iteration Maximum velocity update : 25.00 percent	
Wavepath envelope width [% of period] : 0.0 percent Min velocity : 10 Max velocity : 6000 m/sec	Smooth after each nth iteration only	
Width of Gaussian for one period [sigma]: 3.0 sigma	Smoothing filter weighting	
Gradient search method Gradient search method C Conjugate Gradient	C Gaussian (Uniform No smoothing Used width of Gaussian	
Conjugate Gradient Parameters	Uniform central row weight 1.0 [1100]	
CG iterations 10 Line Search iters. 2 Tolerance 0.001 Line Search tol. 0.0010	Smooth velocity update before updating tomogram	
Initial step 0.10 Steepest Descent step	Damping of tomogram with previous iteration tomogram Damping [01] 0.000 Damp before smoothing	
Edit velocity smoothing Edit grid file generation Start tomography processing Reset	Accept parameters Reset parameters	

Fig. 11 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right).

Compare Fig. 6 with Derecke Palmer 1980. The Generalized Reciprocal Method Of Seismic Refraction Interpretation. Society of Exploration Geophysicists, Tulsa. ISBN 0-931830-14-1 : Fig. 4 on page 17.

Here is the LAYRTOMO subdirectory archive for Fig. 6 with wavemool.grd starting model and WET inversion results : <u>http://rayfract.com/tutorials/LAYRTOMO_WDVS@300Hz_Mar6_2021.rar</u> Here is the profile database archive for Fig. 6 : <u>http://rayfract.com/tutorials/palmfig4_seis32_WaveWDVS@300Hz_Mar6_2021.rar</u>.

WDVS Wavelength-Dependent Velocity Smoothing is described in

Zelt, C. A. and J. Chen, Frequency-dependent traveltime tomography for near-surface seismic refraction data, Geophys. J. Int., 207, 72-88, 2016

Next we try to improve accuracy of velocity imaging directly below the two shot points. Here the weathering velocity is too low and the basement gets pulled up to much (Fig. 6).

Dr. Palmer does not specify the shot positions for his Fig. 4 model and synthetic traveltime data. These shot positions have to be guessed at by looking at the traveltime curves and resulting interpretation. So we moved position of shot no. 1 15m to left and position of shot no. 2 15m to right (Fig. 15) :

▶ select *Header*|*Shot*. Position shot no. 1 with F7/F8. In frame *Offset from shot station* set *Inline* to -15m.

select WET Tomo|Automatic WET. Navigate into c:\ray32\palmfig4\layrtomo folder and select starting model grid wavemool.grd.

> check File Import data Settings Allow shot inline offset from shot station larger than two spacings

> position shot no. 2 with F7/F8. In *Offset from shot station* set *Inline* to 15m. Press ENTER to confirm.

- ۶ click Open button and confirm prompt to obtain Fig. 12. Compare with Fig. 5.
- \geq select WET Tomo Interactive WET. Make sure all parameters are set as in Fig. 11.
- \geq click button Start tomography processing to obtain Fig. 13. Compare with Fig. 6.
- \geq note the more realistic velocity imaging below shot points in Fig. 13 compared with Fig. 6
- \geq also note the 50% smaller RMS error on top of Fig. 13 compared with Fig. 6

Derecke Palmer RMS error 0.2%=0.12ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

 \geq this again demonstrates the importance of correctly specifying the used recording geometry to obtain meaningful WET inversion results. Also see NGU line Aaknes-1 tutorial.

Edit Shot - browse with F7/F8, enter changes with RETURN					
ShotNo.	1	- Time of A	Acquisition		
Type Refraction sho	t 🔻	Date			
Delay 0.0	00000	Time			
Import data type	Import data type ASCII column format				
Field Record No.		-Energy S	ource Point No.	1	
No.		No.			
Shot Station [station no.]		-Sample I	nterval	1	
Pos.	0.0	msec.	0.100000		
Offset from Shot Station [[m]	– Offset Co	ordinates [m]	1	
Inline -15	5.0000	dx	-15.0000		
Lateral (0.0000	dy	0.0000		
Depth (0.0000	dz	0.0000		
Source Type		Sample (Count	1	
Hammer	-		1100		
Source elevation [m]			0.0000		
Uphole time correction te	rm [msecs.]	ĺ	0.000000		
Original filename			PALMFIG4.ASC		
Trigger delay [msecs.]			0.000000		

Fig. 15 : fix inline offset in Header|Shot

Palmfig4 fixed RMS error 0.2%=0.14ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

 1
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 2

Fig. 16 : same as Fig. 13 but with WDVS disabled. Note the too smooth shape of top-of-basement compared to Fig. 13 and compared to true model (Palmer 1980 Fig. 4).

Palmfig4 fixed RMS error 0.2%=0.14ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

Next we decrease the *WDVS frequency* from 300Hz to 200Hz to possibly further improve the sharpness of the top-of-basement :

- ▶ select *Model WDVS Smoothing*. Set *WDVS frequency* to 200Hz (Fig. 10) and click *OK button*.
- select WET Tomo Interactive WET and click Start tomography processing button.
- ▶ confirm prompts to obtain Fig. 18. Compare with Fig. 13.
- note improved shape of basement at inline offsets 50m and 225m in Fig. 18 (Palmer 1980, Fig. 4).

- contrast at corners at top-of-basement and inline offsets 30m, 200m and 250m is too strong in Fig. 18 compared to Fig. 13 and Fig. 4 in (Palmer, 1980).
- Iowering the WDVS frequency (Fig. 10) increases the contrast and magnitude of velocity anomalies at top-of-basement and in overburden.

Derecke Palmer RMS error 0.2%=0.12ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

Fig. 13 : same as Fig. 6 but with inline offset for shot pos. 1 shifted by -15m and shot pos. 2 shifted by 15m (Fig. 15). WDVS enabled @300Hz (Fig. 10). WET parameters shown in Fig. 11.

Derecke Palmer RMS error 0.2%=0.13ms 100 WET itr. 50Hz Width 5.0% initial WAVEMODL.GRD v. 4.01

Next we suppress the too strong magnitude of velocity anomalies by limiting the maximum WET velocity :

- ▶ select WET Tomo|Interactive WET. Edit Max. velocity to 5,500m/s (Fig. 11).
- click button Start tomography processing to obtain Fig. 19.
- > note the suppression of too high velocity anomalies in Fig. 19 compared to Fig. 18.

Conclusions :

- ✓ we have demonstrated that enabling WDVS can give more detailed and more realistic top-of-basement imaging even when using just two shots
- ✓ lowering the *WDVS frequency* increases the contrast and magnitude of velocity anomalies at top-ofbasement and in overburden
- ✓ limiting the maximum WET velocity can give more realistic tomograms when using WDVS
- ✓ we have shown the importance of correctly specifying in our software the field recording geometry (shot positions and receiver positions) used when recording the data
- ✓ for field surveys we strongly recommend recording more shots using a closer shot spacing, to compensate for decreasing signal-to-noise ratio with increasing source-receiver offset
- ✓ for above tutorial *WET inversion* regards shots offset up to 3 *station spacings* from first/last profile receiver station, due to the up-dipping basement refractor both at profile start and end.
- ✓ in general our *WET inversion* will regard offset shots distanced up to two *station spacings* from first/last profile receiver station.

Copyright © 1996-2021 Intelligent Resources Inc All rights reserved.