

Import SEG-2 .DAT & Update header data & multiscale WET inversion GASCH23 v. 4.05 :

Fig. 1 : check *Trace/Open Refractor/Shot CMP breaks*. Top : *Trace/Shot gather*, bottom : *Refractor/Shot CMP breaks*. Shows fit between picked times (solid colored curves, red crosses) and modeled times (dashed blue curves, blue dots). Green dots are your reciprocal picks.

To create the profile database, import the data and browse the imported shots do these steps :

- File New Profile..., set File name to GASCH23 and click Save button
- in the prompt shown next (Fig. 4) click *No* button to leave *Profile start* / first channel at station no. 101 as specified by SEG-2 trace headers RECEIVER_STATION.
- in *Header*|*Profile*... set *Line type* to Refraction spread/line . Set *Station spacing* to 3.048 m. See Fig. 2.
- unzip archive <u>https://rayfract.com/tutorials/GASCH23_INPUT.zip</u> with SEG-2 .DAT shot files & files COORDS1.COR & BREAKS.LST in directory C:\RAY32\GASCH23\INPUT
- check File|SEG-2 import settings|Get distance unit from user
- check File|Import Data Settings|Default distance unit is meter
- select *File Import Data*... and set *Import data type* to **seg-2**. See Fig. 3.
- click Select button and navigate into C:\RAY32\GASCH23\INPUT
- set Files of type to Seismic data files (*.DAT) and select a file e.g. P101.DAT & click Open
- leave *Default spread type* at 10: 360 channels
- click *Import shots button*. Click *Read button* once for each shot displayed in *Import shot* dialog.
- select *File*|*Update header data*|*Update Station Coordinates* & coords1.cor. Click *Import* & *Reset*.
- select *File*|*Update header data*|*Update First Breaks*. Select file **BREAKS**.LST & click *Open*.
- select option Trace|Open Refractor|Shot CMP breaks with Shot gather
- select *Trace*|*Shot gather* to obtain Fig. 1
- click on title bar of TracelShot gather window and press CTRL+F1 to zoom trace amplitude
- browse shots in *TracelShot gather* window with F7/F8 (Fig. 1 top)
- click on title bar of *Refractor*|*Shot CMP breaks* window (Fig. 1 bottom) and press ALT+P. Edit *Maximum time* to 100 ms & press ENTER key to redisplay. Do the same for *Trace*|*Shot gather* window (Fig. 1 top).

To configure and run our default fail-safe Smooth inversion :

- check option Grid|Receiver station ticks on top axis
- check option *Grid*|*CS_CENTERED font for shot points and receivers* to workaround Surfer symbol display issues
- edit Grid|Surfer plot Limits as in Fig. 8
- check option ModellForward modeling SettingNormalize RMS error with maximum picked time
- select *Model*|*WDVS Smoothing* and check box *Discard WET smoothing and WDVS smoothing after forward modeling.* Leave box *use WDVS for forward modeling of traveltimes* unchecked (Fig. 9).
- select Smooth invert|WET with 1D-gradient initial model
- wait for the 1D-gradient starting model to display as in Fig. 5
- confirm prompt to continue with WET inversion to obtain WET output shown in Fig. 6 & 7

Line ID GA	SCH23			Time	of Acquisition
	fraction aproad	/line		Date	
Interspe Inte	nacion spread	mile		Time	
Instrument Client Company Observer Note Station spacing (m Vin. horizontal sep) aration [%]		3.04800	Time of Date Time Units Sort Const	of Processing
Profile start offset [m]		0.0000		
Force grid o	ell size		Cell si	ze [m]	0.5000
Force first receive	er station numb	er for pro	ofile		
First receiver [sta	tion number]		0	∏ Fo	rce first receiver
Extrapolate starti	ng models and	WET to	mograms		
Extrapolate [stati	on spacings]		0	∏ Ex	trapolate tomograms
Add borehole lin	es for WET tom	ography	y		
Borehole 1 line	Select				
	Select				
Borehole 2 line					
Borehole 2 line Borehole 3 line	Select				

Import data type	SEG-2
-Input directory : select one da	ta file. All data files will be imported
Select	C:\RAY32\Gasch23_Reimport\INPUT\
Take shot record number from	DOS file name
Optionally select .HDR batch	file and check Batch import
.HDR batch	
Write .HDR batch file listing st	nots in input directory
Output .HDR	
Write HDB only	Import shots and write HDR
1 mile in Diritolity	
Overwrite existing shot data	Batch import
Overwrite all O Prom	pt overwriting 🗌 Limit offset
Maximum offset imported [statio	on nos.] 1000.00
Default shot hole depth [m]	Default spread type
0.00	10: 360 channels 🗨
Target Sample Format	16-bit fixed point
- T	
Comparing Comparing	Import Reverted spread layout
Conect picks for delay time	(use e.g. for .Fix mes)
Default sample interval [msec]	0.10000000
	20000
Default sample count	20000

Fig. 2 : Header/Profile

Fig. 4 : click *No* button to to leave first channel at station no. 101 as specified by SEG-2 trace headers RECEIVER_STATION .

For compatibility with older profiles and tutorials and old COORDS.COR files which assume first profile receiver at station no. 0 click No button. For multi-spread profiles click No button and use our .HDR batch import options in *File/Import Data* dialog to generate the .HDR file. Next edit the .HDR file using MS Notepad editor with corrected station numbers for *Layout start* and *Shot pos.* for all shots. Next use the edited .HDR batch file for import of all shots.

Fig. 5 : 1D-gradient starting model obtained with Smooth invert/WET with 1D-gradient initial model.

Fig. 6 : 2D WET output obtained with *Smooth invert/WET with 1D-gradient initial model* & starting model shown in Fig. 5. 20 WET iterations using Steepest Descent method & Gaussian update weighting & full WET smoothing. Discard WET smoothing after forward modeling. Leave WDVS disabled (Fig. 9).

GASCH23 RMS error 1.9%=1.53ms 20 WET itr. 50Hz Width 4.5% initial GRADIENT.GRD v. 4.05

Fig. 7 : WET wavepath coverage plot obtained with Fig. 6. Unit is wavepaths per pixel.

Edit Surfer plot limits			
Plot Limits	e data limits	ОК	Fig. 8 (left) : Grid Surfer plot Limits dialog .
Min. offset -9.144	[m]	Cancel	
Max. offset 116.572	? [m]	Reset	Edit WDVS (Zeit & Chen 2010)
Min. elevation 1066.000	[m]	Reset to grid	Lear parameters for instructing of traveltimes
Max. elevation 1125.000	[m]	Redisplay grid	$ \overline{{\boldsymbol{\checkmark}}} $ fast WDVS : less accurate mapping of scan line nodes to grid nodes
Min. velocity 300	[m/sec.]		add nodes once only with overlapping scan lines for velocity averaging
Max. velocity 5500	[m/sec.]		add all velocity nodes within WDVS area with radius of one wavelength pad WDVS area border with one grid cell
Plot Scale			WDVS frequency 300.00 [Hz] Angle increment between scan lines 7 [Degree]
Page unit centimeter. Unched	k for inch.		Begard nth node along scan line [3] [node]
X Scale length 6.00	[inch]		
Y Scale length 3.00	[inch]		Parameters for Cosine-Squared weighting function (Chen and Zelt 2012) a : Cosine argument power 1.000 [power]
Color Scale			b : Cosine-Squared power 1.000 [power]
Adapt color scale			Modify WET smoothing mode : discard after forward modeling
Scale height 3.020	[inch]		discard WET smoothing and WDVS smoothing after modeling
Velocity interval 250	[m/sec.]		C restore WET smoothing and discard WDVS smoothing only
Coverage interval 20	[paths/pixel]		OK Cancel Reset
Receiver labeling		1	
First station 10	[station no.]		Fig. 9 : Model WDVS Smoothing dialog .
Station interval	[station no.]		
Use station index or station n	o. offset		

Selectenorlie	C:\RAY32\GASCH23\RECIPROCAL.EI
ort lines in .ERR file b	y decreasing reciprocal error
C Sort ERR lines by	relative reciprocal error
C Sort ERR lines by	absolute reciprocal error in ms
Sort.ERR lines by	r offset and CMP (as in Trace Offset gather display)
MP interval for mappi	ng common-offset sorted traces to same midpoint

Fig. 10 : Trace|Export reciprocal errors and update database

How to plot your reciprocal traveltime picks on shot-sorted trace gathers :

Next we show how to plot your reciprocal traveltime picks on shot-sorted trace gathers. This lets you quality-control your first break picks and check the validity of your recording geometry specification (shot station numbers and receiver station numbers). See Whiteley J. et al. 2020 : Landslide monitoring using seismic refraction tomography – The importance of incorporating topographic variations :

- > select TracelExport reciprocal traveltime picks and update database
- click button Select error file and click Save button (Fig. 10)
- click button Export to .ERR
- > optionally check new option TracelOpen Refractor|Shot CMP breaks with Shot gather
- select TracelShot gather to obtain a window display as in our Fig. 1
- > check new version 4.05 option *DisplaylShow reciprocal picks on Shot Gather*
- ▶ browse and zoom trace gathers with function keys F7/F8, F1/F2 etc. as usual
- navigate traces with arrow-left and arrow-right keys
- if a reciprocal pick was determined/matched to the current trace then this is plotted as a green dot on the trace
- also we show *Reciprocal Shot/Channel* and *Reciprocal offset[m]/CMP* in status bar at bottom of window (Fig. 1) if a reciprocal pick is available in the .ERR file

How to run multiscale WET inversion using our 1D-gradient initial model :

- select WET Tomo Interactive WET
- click on *Iterate* button
- ▶ edit WET runs as shown in Fig. 11. Set runs no. 8/9/10 to 20 WET iterations each. Click *OK* button.

Run No.	Frea. [Hz]	Width [%]	Width [ms]	Iterations				
Run 1	50.0	30.0	6.000	20	Blank	ОК		
Run 2	50.0	26.0	5.200	20	🗌 Blank	Cancel		
Run 3	50.0	22.0	4.400	20	🗌 Blank	Reset		
Run 4	50.0	18.0	3.600	20	Blank	WET runs active		
Run 5	50.0	15.0	3.000	20	🗌 Blank	🔲 Scale default widths		
Run 6	50.0	12.0	2.400	20	Blank	Plot runs in Surfer		
Run 7	50.0	10.0	2.000	20	Blank	Prompt run misfit		
Run 8	50.0	8.0	1.600	20	🔽 Blank	Runs completed 10		
Run 9	50.0	7.0	1.400	20	🔽 Blank	Currenteur es -1		
Run 10	50.0	6.0	1.200	20	🔽 Blank			
Blank below wavepath envelope Blank after each run 🔽 Blank after last run								

Fig. 11 : WET Tomo|Interactive WET|Iterate .

Edit WET runs dialog. Edit as shown and click OK button.

- reselect WET Tomo Interactive WET
- click button *Edit velocity smoothing* (Fig. 12)
- click radio button Minimal smoothing after each tomography iteration (Fig. 12)
- click button Accept parameters
- in WET main dialog click button *Start tomography processing* to obtain Fig. 13 and Fig. 14 after 10 WET runs with 20 WET iterations per each run as specified in Fig. 11
- note the improved imaging of the landslide sliding plane and related velocity inversion in Fig. 13 compared to Fig. 6. The recorded profile crosses the landslide.

Edit WET Wavepath Eikonal Traveltime Tomography Parameters	Edit WET Tomography Velocity Smoothing Parameters	
Specify initial velocity model	Determination of smoothing filter dimensions	
Select C:\RAY32\GASCH23\GRADTON	C Full smoothing after each tomography iteration	
Stop WET inversion after	Minimal smoothing after each tomography iteration	
Number of WET tomography iterations : 20 ite	erations	O Manual specification of smoothing filter, see below
or RMS error gets below 2.0 p	ercent	Smoothing filter dimensions
ar BMS error doos not improve for n -	orationa	Half smoothing filter width : 3 columns
	erauons	Half smoothing filter height : 1 grid rows
or WEI inversion runs longer than 100 m	ninutes	
WET regularization settings		Suppress arteracts below steep topography
Wavepath frequency : 50.00 H	z Iterate	J Adapt snape of littler. Oncheck for beller resolution.
Ricker differentiation [-1:Gaussian,-2:Cosine] : -1 tim	mes	Maximum relative velocity update after each iteration
Wavepath width [percent of one period] : 4.5 pe	ercent Iterate	Maximum velocity update : 25.00 percent
Wavepath envelope width [% of period] : 0.0 pe	ercent	Smooth after each nth iteration only
Min. velocity : 10 Max. velocity : 6000 m	n/sec.	Smooth nth iteration : n = 1 iterations
Width of Gaussian for one period [SD] : 3.0 sigma		Smoothing filter weighting
Gradient search method		O Gaussian 🔎 Uniform 🦳 No smoothing
Steepest Descent Conjugate Grad	dient	Used width of Gaussian 1.0 [SD]
- Conjugate Gradient Parameters		Uniform central row weight 1.0 [1100]
CG iterations Line Search iters.	2	Smooth velocity update before updating tomogram
Tolerance 0.001 Line Search tol.	0.0010	✓ Smooth update Smooth nth ✓ Smooth last
Initial step 0.10 Steepest Desce	ent step	Damping of tomogram with previous iteration tomogram
Edit <u>v</u> elocity smoothing Edit grid file generation		Damping [01] 0.000 Damp before smoothing
Start tomography processing Reset C	ancel	Accept parameters Reset parameters

Fig. 12 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right).

Fig. 13 : Multiscale Steepest-Descent WET inversion. Output of 10th WET run shown. Starting model for 1st run is Fig. 5. Discard WET smoothing after forward modeling. Leave WDVS disabled (Fig. 9). Minimal WET smoothing (Fig. 12).

GASCH23 RMS error 1.6%=1.34ms 20 WET itr. 50Hz Width 6.0% initial RUN9IT20.GRD v. 4.05

Fig. 14 : WET wavepath coverage plot obtained with Fig. 13. Unit is wavepaths per pixel.

Here is the link to the .RAR archive with the GASCH23 profile folder for above Fig. 13 :

https://www.dropbox.com/scl/fi/2zq6lvktfx6w06wxtd0rl/GASCH23_Dec3_2023.rar?rlkey=i4wwrg40f6x9 k8xosvlou9xj8&dl=0

Select above link and copy with CTRL+C. Then paste the link into your web browser with CTRL+V and press RETURN key to download the .RAR archive.

How to obtain layered refraction starting model using our CMP Intercept-Time refraction method :

Next we show layered refraction interpretation with our CMP Intercept-Time refraction method and using this as starting model for multiscale WET inversion with WDVS enabled :

Fig. 15 : select Refractor|Midpoint breaks. Press ALT+M to bring up mapping parameters dialog. Edit as shown and click button Map traces.

- select Refractor Midpoint breaks (Fig. 15)
- > press ALT+M and edit mapping parameters (Fig. 15)
- click button Map traces to refractors
- select Depth|CMP Intercept-Time Refraction
- ▶ confirm warning prompt about artefacts to obtain layered refraction starting model (Fig. 17)
- ▶ when prompted to continue with WET inversion click *No* button
- click on title bar of CMP Depth Section window
- > press ALT+M and edit CMP Model Parameters as shown in Fig. 16
- click OK button to obtain Fig. 17

Fig. 16 : select Depth|CMP Intercept-Time Refraction. When prompted to continue with WET inversion click No button. Click on title bar of CMP Depth Section window. Press ALT+M and edit CMP Model Parameters as shown. Click OK. GASCH23 RMS error 5.3%=4.32ms initial CMPMODL.GRD v. 4.05

dit WDVS (Zelt & Chen 2016)						
Edit parameters for wavelength-dependent velocit	y smoothing-					
use WDVS for forward modeling of traveltimes						
✓ fast WDVS : less accurate mapping of scan line nodes to grid nodes						
add nodes once only with overlapping scan lines for velocity averaging						
add all velocity nodes within WDVS area with radius of one wavelength						
pad WDVS area border with one grid cell						
WDVS frequency	200.00	[Hz]				
Angle increment between scan lines	7	[Degree]				
Regard nth node along scan line	3	[node]				
Parameters for Cosine-Squared weighting function	(Chen and Ze	əlt 2012)				
a : Cosine argument power	1.000	[power]				
b : Cosine-Squared power 1.000 [power]						
Modify WET smoothing mode : discard after forwa	rd modeling-					
C discard WET smoothing and WDVS smoothing	g after modeli	ng				
restore WET smoothing and discard WDVS sr	noothing only					
OK Cancel Reset						

our CMP Intercept-Time refraction starting model.

Fig. 18 : select Model|WDVS Smoothing. Edit as shown and click OK button.

Edit WET Wavepath Eikonal Traveltime Tomography Parameters	Edit WET Tomography Velocity Smoothing Parameters
Specify initial velocity model Select C:\RAY32\GASCH23\LAYRTOMO\CMPMODL.GRD	Determination of smoothing filter dimensions Full smoothing after each tomography iteration
Stop WET inversion after Number of WET tomography iterations : 20 iterations	 Minimal smoothing after each tomography iteration Manual specification of smoothing filter, see below
or RMS error gets below 2.0 percent or RMS error does not improve for n = 20 iterations or WET inversion runs longer than 100 minutes	Smoothing filter dimensions Half smoothing filter width : 7 columns Half smoothing filter height : 3 grid rows
WET regularization settings Wavepath frequency : 50.00 Hz Iterate	Suppress artefacts below steep topography Adapt shape of filter. Uncheck for better resolution.
Ricker differentiation [-1:Gaussian,-2:Cosine] : -1 times Wavepath width [percent of one period] : 6.0 percent Iterate	Maximum relative velocity update after each iteration Maximum velocity update : 25.00 percent
Wavepath envelope width [% of period]: 0.0 percent Min. velocity: 10 Max. velocity: 6000 m/sec.	Smooth after each nth iteration only Smooth nth iteration : n = 1 iterations
Gradient search method Gradient search method Conjugate Gradient	Smoothing filter weighting C Gaussian I Uniform No smoothing Used width of Gaussian 1.0 [SD]
Conjugate Gradient Parameters	Uniform central row weight 1.0 [1100]
CG iterations 10 Line Search iters. 2 Tolerance 0.001 Line Search tol. 0.0010	Smooth velocity update before updating tomogram
Initial step 0.10 Steepest Descent step Edit velocity smoothing Edit grid file generation	Damping of tomogram with previous iteration tomogram Damping [01] 0.000 Damp before smoothing
Start tomography processing Reset Cancel	Accept parameters Reset parameters

Fig. 19 : select WET Tomo|Interactive WET to display WET main dialog (left). Edit velocity smoothing (right).

How to run multiscale WET inversion using our CMP Intercept-Time Refraction starting model :

- ▶ select *Model*|*WDVS Smoothing*. Edit as in Fig. 18 and click *OK* button.
- > check option Model|Forward modeling Settings|Normalize RMS error with maximum picked time
- select WET TomolInteractive WET (Fig. 19 left)
- > click button *Iterate* and edit WET runs as in Fig. 11. Click *OK* button.
- click button *Edit velocity smoothing* and edit as in Fig. 19 at right
- > click buttons Accept parameters and Start tomography processing (Fig. 19) to obtain Fig. 20 & 21

Fig. 20 : Multiscale Steepest-Descent WET inversion. Output of 10th WET run shown. Starting model for 1st run is Fig. 17. Don't discard WET smoothing after forward modeling. Disable WDVS (Fig. 18). Full WET smoothing (Fig. 19). Edit WET runs dialog as in Fig. 11.

GASCH23 RMS error 2.0%=1.62ms 20 WET itr. 50Hz Width 6.0% initial RUN9IT20.GRD v. 4.05

GASCH23 RMS error 1.8%=1.45ms 20 WET itr. 50Hz Width 6.0% initial RUN9IT20.GRD v. 4.05

Fig. 22 : Multiscale Steepest-Descent WET inversion. Output of 10th WET run shown. Starting model for 1st run is Fig. 5. Discard WET smoothing after forward modeling. Enable WDVS at 200Hz (Fig. 9). Minimal WET smoothing (Fig. 12).

Here is the link to the .RAR archive with the GASCH23 profile folder for above Fig. 20 :

https://www.dropbox.com/scl/fi/cljr106rewsy0uymo2al7/GASCH23_LAYRTOMO_Dec12_NoWDVS_Fu llWETSmoothing.rar?rlkey=x7014z07cpbs54r5slh2t56me&dl=0

Select above link and copy with CTRL+C. Then paste the link into your web browser with CTRL+V and press RETURN key to download the .RAR archive.

Note the non-uniqueness when interpreting refraction profiles with strong velocity inversions. Compare Fig. 20 with Fig. 22 and with Fig. 13. The final WET tomogram after 10 WET runs depends on both the starting model and on the WET smoothing. Also the WDVS smoothing and restoring or discarding of WET smoothing after forward modeling play a role in determining the WET output.

We recommend restoring WET smoothing after forward modeling (Fig. 18) when using a layered starting model such as for Fig. 20. Also we recommend using Full WET smoothing (Fig. 19) with a layered starting model. These settings help to obtain a realistic WET interpretation with fewer artefacts and without getting stuck in a local minimum of the traveltime misfit function when using a layered starting model.

We thank our client Gasch Geophysical Services, Inc. in Rancho Cordova, California for making available the above landslide profile and for their permission to use this profile for a tutorial.

For an overview of our WDVS (Wavelength-Dependent Velocity Smoothing; Zelt and Chen 2016) see these publications :

Zelt, C. A. and J. Chen 2016. Frequency-dependent traveltime tomography for near-surface seismic refraction data, Geophys. J. Int., 207, 72-88, 2016. See https://dx.doi.org/10.1093/gji/ggw269 and https://www.researchgate.net/publication/305487180_Frequency-

dependent traveltime tomography for near-surface seismic refraction data.

Rohdewald S.R.C. 2021a. Improving the resolution of Fresnel volume tomography with wavelengthdependent velocity smoothing, Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings: 305-308. https://doi.org/10.4133/sageep.33-169 . Slides at https://rayfract.com/pub/SAGEEP%202021%20slides.pdf

Rohdewald S.R.C. 2021b. Improved interpretation of SAGEEP 2011 blind refraction data using Frequency-Dependent Traveltime Tomography, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4214, https://doi.org/10.5194/egusphere-egu21-4214

For an objective comparison of tomographic refraction analysis methods see these publications :

Zelt, C.A., Haines, S., Powers, M.H. et al. 2013. Blind Test of Methods for Obtaining 2-D Near-Surface Seismic Velocity Models from First-Arrival Traveltimes, JEEG, Volume 18(3), 183-194. https://scholarship.rice.edu/handle/1911/72113?show=full . https://www.researchgate.net/publication/267026965 .

Hiltunen, D. R., Hudyma, N., Quigley, T. P., & Samakur, C. 2007. Ground Proving Three Seismic Refraction Tomography Programs. Transportation Research Record, 2016(1), 110–120. https://doi.org/10.3141/2016-12 . https://www.researchgate.net/publication/242072938 .

Sheehan J.R., Doll W.E. and Mandell W.A. 2005a. An Evaluation of Methods and Available Software for Seismic Refraction Tomography. Journal of Environmental and Engineering Geophysics, volume 10, pp. 21-34. ISSN 1083-1363, Environmental and Engineering Geophysical Society. JEEG March 2005 issue. https://dx.doi.org/10.2113/JEEG10.1.21 . https://rayfract.com/srt_evaluation.pdf . https://www.researchgate.net/publication/242159023 .

More references :

Whiteley J. et al. 2020. Landslide monitoring using seismic refraction tomography - The importance of incorporating topographic variations. Engineering Geology 2020. https://www.researchgate.net/publication/339280163

Copyright © 1996-2023 Intelligent Resources Inc. All rights reserved.