
Stillwater Model Dam line D1P2NO24 P-wave refraction, 100 WET iterations @30Hz 
using wavepath width 30 percent and Ricker wavelet for back-projection of residuals 

 
Fig. 1 : 1D-gradient starting model obtained with Smooth invert|WET with 1D-gradient initial model. Default settings. Grid 

cell size forced to 0.04m in Header|Profile (Fig. 7). Red circles are sources. Grey symbols are geophones. 
 

 
Fig. 2 : 100 WET iterations, WET frequency 30Hz, Wavepath width 30%. Starting model is Fig. 1. Ricker differentiation 0. 

Minimal WET smoothing. Don’t adapt shape of filter. See Fig. 5. No WDVS smoothing. 
 

 
Fig. 3 : WET wavepath coverage plot obtained with Fig. 2. Unit is summed wavepath weight squared. Wavepath coverage 

plot is sharpened with Raise wavepath weight to power = 2.0. See Fig. 8. 
 

 
Fig. 4 : Same WET inversion as Fig. 2 but with WDVS smoothing activated @600Hz (Fig. 6). 
 

We reprocessed the original data used for Stillwater Model Dam Fig. 3.13 in PhD Thesis Leti 
Wodajo (Wodajo, 2018) to better image two constructed low-velocity regions in the dam. 

Compare our optimized interpretation in Fig. 4 with Fig. 3.13 (Wodajo, 2018). While Fig. 3.13 
was obtained with default WET frequency 50Hz and default wavepath width 5%, we lowered the WET 
frequency to 30Hz and increased the wavepath width to 30% (Fig. 5). Also we changed the Ricker 
differentiation from default -1 (Gaussian) to 0 (Ricker wavelet; Schuster 1993). 
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Fig. 5 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right). 
 

We sharpened the Wavepath coverage plot (Fig. 3) with Raise wavepath weight to power = 2.0 
(Fig. 8) to optimally visualize and match low-velocity anomalies (Fig. 2 and Fig. 4) on the coverage plot.  
 

We used the default 1D-gradient starting model (Fig. 1) obtained by laterally averaging the 
DeltatV pseudo-2D velocity (Sheehan, 2005). We used optimized WET inversion settings and smoothing 
as in Fig 5. When enabling Wavelength-Dependent Velocity Smoothing (WDVS; Zelt and Chen 2016; 
Rohdewald, 2021a; Rohdewald, 2021b) at 600Hz (Fig. 6) for WET inversion the two central low-velocity 
zones get separated horizontally more clearly (Fig. 4). 

 
We set Ricker differentiation to 0 (Fig. 5) using a Ricker wavelet for weighting of WET velocity 

update across the wavepath during back-projection of residuals (Schuster, 1993). Ricker wavelet weighting 
works better than default Gaussian update weighting (Ricker differentiation = -1) for this line. 
 

Before running our WET inversion (Fig. 5) also check option Model|Forward modeling 
Settings|Normalize RMS error with maximum picked time to be compatible with RMS error display on 
top of Fig. 3.13 (Wodajo, 2018) obtained with version 3.20 of our software. 
 

For this line we observed that the lower the WET Wavepath frequency and the wider the WET 
Wavepath width (Fig. 5) the deeper the low-velocity zone in center of tomogram is imaged. This 
dependence of imaged anomaly depth on WET wavepath frequency and width confirms that you need a-
priori information about the depth of low-velocity zones for optimal interpretation with our WET inversion 
(Wodajo, 2018). Also this dependence on WET parameters reconfirms that SRT interpretation is non-
unique especially in case of decreasing velocity with increasing depth. 
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Fig. 6 : Model|WDVS Smoothing 

 
 
Fig. 7 : Header|Profile

       

 
 
 
Fig. 8 : WET Tomo|Coverage plot setup

 
 
 
 
 
 
 
 
 

 
The profile database is available at https://rayfract.com/tutorials/D1P2No24_seis32_50ms_July21_2021.rar  
 
 download above .rar archive to your hard disk 
 open Windows Explorer 
 navigate into your download directory 
 select the .rar archive with left mouse button 
 right-click the selected .rar archive and select "Copy" command 
 in Windows Explorer navigate into your C:\RAY32 root directory 
 click “New folder” and create a new directory C:\RAY32\D1P2NO24 
 navigate into this new folder by left-clicking it 
 paste above .rar archive with "Paste" command in Windows Explorer “Organize” menu 
 right-click the .rar archive in your C:\RAY32\D1P2NO24 directory and select "Extract here" command 
 start up Rayfract® via desktop icon 
 select File|Open Profile and C:\RAY32\D1P2NO24\SEIS32.DBD 
 
 see our download instructions for details on usage of Windows Explorer and how to get started with 

our tutorials. 

https://rayfract.com/tutorials/D1P2No24_seis32_50ms_July21_2021.rar
https://rayfract.com/help/Download_tutorialData.pdf


 
Fig. 9 : Trace|Shot gather (left). Red circles are picked first breaks. Blue crosses are modeled first breaks. 

Refractor|Shot breaks (right). Solid grey&blue curves are picked traveltimes. Dashed blue curves are modeled times. 
 

 
Fig. 10 : Trace|Offset gather for common offset of 4.59 meters (top). Refractor|Offset breaks (bottom). 
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