



Fig. 1 : left : *Trace*|*Shot gather*, right : *Refractor*|*Shot breaks*. Shows fit between picked times (solid colored curves, red crosses) and modeled times (dashed colored curves, blue crosses) obtained for multirun WET output (Fig. 10)

To create the profile database, import the data and browse the imported shots do these steps :

- *File*|*New Profile*..., set *File name* to 1\_1D and click *Save button*
- in *Header* | *Profile*... set *Line type* to Refraction spread/line . Set *Station spacing* to 2.0 m.
- check box Force grid cell size and set Cell size[m] to 0.4m. See Fig. 2.
- unzip <u>1 1D.zip</u> with files 1\_1DASCII.ASC, 1\_1DCOORDS.COR, 1\_1DSHOTS.SHO & 1\_1D.CLR in directory C:\ray32\1\_1D\INPUT
- select File Import Data ... and set Import data type to ASCII column format. See Fig. 3.
- leave Default spread type at 10: 360 channels
- click *Select button*, navigate into c:\ray32\1\_1D\INPUT and select file 1\_1DASCII.ASC
- set Default sample count to 500 to setup the y scale for Trace|Shot gather & Refractor|Shot breaks
- click *Import shots button*. The *Import shot dialog* is shown for each shot in the .asc file.
- for each shot leave Layout start and Shot pos. at shown values and click Read button
- select File|Update header data|Update Station Coordinates
- navigate into directory C:\RAY32\1\_1D\INPUT
- select file 1 1DCOORDS.COR . Click Open button.
- File Update header data Update Shotpoint coordinates with 1 1DSHOTS.SHO
- select Trace|Shot gather and Window|Tile to obtain Fig. 1

To configure and run DeltatV+XTV inversion and display the pseudo-2D starting model :

- uncheck *DeltatV DeltatV Settings Reduced offset 0.0 is valid trace with time 0.0.* See Fig. 12.
- check *DeltatV DeltatV Settings Suppress velocity artefacts*
- check DeltatV DeltatV Settings Process every CMP offset
- check *DeltatV DeltatV Settings Smooth CMP traveltime curves*
- select *DeltatV* XTV parameters. Click buttons Layer model & Accept. See Fig. 14.
- select *DeltatV Interactive DeltatV*. Confirm prompt and edit parameters as in Fig. 13.
- click button *DeltatV* inversion
- in dialog Save DeltatV output click yellow Create new folder icon at upper right

- name new folder as Nov18Regr4. Double-click this new folder to enter it.
- set *File name* to Nov18Regr4. Click *Save* button.
- wait for the *DeltatV+XTV inversion* to complete to obtain Fig. 8

| Edit Profile                                                        |                          |                     |            |                             |                              |                     |      |
|---------------------------------------------------------------------|--------------------------|---------------------|------------|-----------------------------|------------------------------|---------------------|------|
| Line ID IL                                                          | ID<br>fraction spread    | l/line<br>ItatV+XTV | <b>V</b>   | - Time o<br>Date<br>Time    | f Acquis                     | ition —             |      |
| Instrument Client                                                   |                          |                     |            | Time o<br>Date<br>Time      | f Proces                     | sing —              |      |
| Company<br>Observer<br>Note                                         |                          |                     | A          | Units<br>Sort               | meters<br>As acq             | uired               | •    |
| Station spacing [n<br>Min. horizontal sep<br>Profile start offset ] | ı]<br>baration [%]       | 2                   | 0000<br>25 | ⊂ Left<br>✓ For<br>Cell siz | handed<br>ce grid c<br>e (m) | coordin<br>ell size | ates |
| Add borehole lin<br>Borehole 1 line                                 | es for WET tom<br>Select | lography-           |            |                             | - ()                         |                     |      |
| Borehole 2 line<br>Borehole 3 line<br>Borehole 4 line               | Select<br>Select         |                     |            |                             |                              |                     |      |
| ок                                                                  | Cancel                   | R                   | eset       |                             |                              |                     |      |

| Import data type     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASCII colur       | nn format 💌          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| Input directory : se | lect one data f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ile. All data fil | es will be imported  |
| Select               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | D:\RAY32\1_1D\INPUT\ |
| Take shot record n   | umber from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Record nur        | mber 🗸               |
| Optionally select.   | HDR batch file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and check B       | atch import          |
| .HDR batch           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                      |
| Write .HDR batch     | file listing shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s in input dire   | ctory                |
| Output .HDR          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                      |
| Write .HDR on        | ly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Import sl         | hots and write .HDR  |
| Overwrite existing   | shot data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | Batch import         |
| Overwrite all        | O Prompt of the second seco | overwriting       | Limit offset         |
| Maximum offset imp   | orted [station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nos.]             | 1000.00              |
| Default shot hole de | epth [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default spre      | ead type             |
| 0.00                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10: 360 cha       | nnels 💌              |
| Target Sample For    | mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16-bit fixed      | point -              |
| Turn around spr      | ead by 180 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | grees during      | import               |
| Correct picks for    | r delay time (u:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | se e.g. for .PI   | (files)              |
| Default sample inte  | rval [msec]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0.10000000           |
| Default sample cou   | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 500                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                      |

## Fig. 2 : Header|Profile

| Edit Surfer plot limi   | ts             |               |               |  |  |
|-------------------------|----------------|---------------|---------------|--|--|
| Plot Limits             |                |               | ОК            |  |  |
| Plot limits active      |                |               |               |  |  |
| Min. offset             | -6.000         | [m]           | Cancel        |  |  |
| Max. offset             | 122.800        | [m]           | Reset         |  |  |
| Min. elevation          | 50.000         | [m]           | Reset to grid |  |  |
| Max. elevation          | 100.000        | [m]           |               |  |  |
| Min. velocity           | 500            | [m/sec.]      |               |  |  |
| Max. velocity           | 6000           | [m/sec.]      |               |  |  |
| Plot Scale              |                |               |               |  |  |
| Proportional XY Scaling |                |               |               |  |  |
| Page unit centin        | neter. Uncheck | for inch.     |               |  |  |
| X Scale length          | 6.000          | [inch]        |               |  |  |
| Y Scale length          | 4.000          | [inch]        |               |  |  |
| Color Scale             |                |               |               |  |  |
| Adapt color sca         | le             |               |               |  |  |
| Scale height            | 4.000          | [inch]        |               |  |  |
| Velocity interval       | 500            | [m/sec.]      |               |  |  |
| Coverage interval       | 5              | [paths/pixel] |               |  |  |

Fig. 4 : Grid|Surfer plot Limits



Fig. 5 : WET Tomo|WET Update weighting

| Edit WET Wavepath Eikonal Traveltime Tomography Parameters   | Edit WET Tomography Velocity Smoothing Parameters                     |
|--------------------------------------------------------------|-----------------------------------------------------------------------|
| Specify initial velocity model                               | Determination of smoothing filter dimensions                          |
| Select D:\ray32\1_1D\Nov18Regr4\N0V18REGR4.GRD               | C Full smoothing after each tomography iteration                      |
| Stop WET inversion after                                     | <ul> <li>Minimal smoothing after each tomography iteration</li> </ul> |
| Number of WET tomography iterations : 62 iterations          | Manual specification of smoothing filter, see below                   |
| or RMS error gets below 20 percent                           | Smoothing filter dimensions                                           |
|                                                              | Half smoothing filter width : 3 columns                               |
| i or RMS error does not improve for n = 20 Iterations        | Half smoothing filter height : 1 grid rows                            |
| or WET inversion runs longer than 100 minutes                |                                                                       |
| WET regularization settings                                  | Suppress artefacts below steep topography                             |
| Wavepath frequency :   60   Hz   Iterate                     |                                                                       |
| Ricker differentiation [-1:Gaussian,-2:Cosine] : -2 times    | Maximum relative velocity update after each iteration                 |
| Wavepath width [percent of one period] : 120 percent Iterate | Maximum velocity update : 5.00 percent                                |
| Wavepath envelope width [% of period] : 0.0 percent          | Smooth after each nth iteration only                                  |
| Min. velocity : 150 Max. velocity : 6000 m/sec.              | Smooth nth iteration : n = 25 iterations                              |
| Width of Gaussian for one period [sigma] : 3.0 sigma         | Smoothing filter weighting                                            |
| Cradiant agarah mathad                                       | Gaussian     C Uniform                                                |
| C Steepest Descent  C Conjugate Gradient                     | Used width of Gaussian 5.5 sigma                                      |
| Derivert On first Deserver                                   | Uniform central row weight 1.0 [1100]                                 |
|                                                              |                                                                       |
| CG iterations 20 Line Search iters. 2                        | Smooth velocity update before updating tomogram                       |
| Tolerance 0.001 Line Search tol. 0.0010                      | Smooth velocity update Smooth last iteration                          |
| Initial step 0.10 Steepest Descent step                      | Damping of tomogram with previous iteration tomogram                  |
| Edit velocity smoothing Edit grid file generation            | Damping [01] 0.900 Damp before smoothing                              |
| Start tomography processing Reset Cancel                     | Accept parameters Reset parameters                                    |

Fig. 6 : left : WET Tomo|Interactive WET tomography

| riaht : | Edit | velocity | smoothing | . See also | ) Fia. 16 |   |
|---------|------|----------|-----------|------------|-----------|---|
|         |      |          |           |            |           | - |

| Edit WET ru                   | ins - wavep | ath width |            |            |                           |                      |
|-------------------------------|-------------|-----------|------------|------------|---------------------------|----------------------|
| Run No.                       | Freq. [Hz]  | Width [%] | Width [ms] | Iterations |                           | ок                   |
| Run 1                         | 60.0        | 30.0      | 5.000      | 20         | Blank                     |                      |
| Run 2                         | 60.0        | 28.0      | 4.667      | 20         | 🔽 Blank                   | Cancel               |
| Run 3                         | 60.0        | 26.0      | 4.333      | 20         | 🔽 Blank                   | Reset                |
| Run 4                         | 60.0        | 24.0      | 4.000      | 20         | 🔽 Blank                   | WET runs active      |
| Run 5                         | 60.0        | 22.0      | 3.667      | 20         | 🔽 Blank                   | Scale default widths |
| Run 6                         | 60.0        | 20.0      | 3.333      | 20         | 🔽 Blank                   | Plot runs in Surfer  |
| Run 7                         | 60.0        | 18.0      | 3.000      | 20         | 🔽 Blank                   | Prompt run misfit    |
| Run 8                         | 60.0        | 16.0      | 2.667      | 20         | 🔽 Blank                   | All runs completed   |
| Run 9                         | 60.0        | 14.0      | 2.333      | 20         | 🔽 Blank                   |                      |
| Run 10                        | 60.0        | 12.0      | 2.000      | 20         | <ul> <li>Blank</li> </ul> | Resume current run   |
| Blank below wavepath envelope |             |           |            |            |                           |                      |

Fig. 7 : WET Tomo|Interactive WET tomography|Iterate lets you edit the multirun WET wavepath width or WET frequency schedule. Also lets you edit the number of WET iterations for each run (effective for Steepest Descent only) and blanking after each run. For Conjugate Gradient the number of WET iterations is determined with controls CG iterations (outer loop) and Line Search iters. (inner loop; <u>Shewchuk 1994</u>).







Fig. 9 : true model for line 1\_1D built by NGU and used for synthetic shots (Fig. 1) forward modeled by NGU. See ...\MODEL subdirectory in <u>.RAR archive</u> for Surfer .GRD file.



1\_1D RMS error 0.9%=0.11ms 61 WET itr. 60Hz Width 12.0% initial RUN9IT62.GRD v. 3.36





1\_1D RMS error 0.9%=0.11ms 61 WET itr. 60Hz Width 12.0% initial RUN9IT62.GRD v. 3.36

| $\checkmark$        | Output Measured CMP Velocities Output Horizontal offset of CMP pos. in meters                                                                                                                                                                            | Fig. 12 :<br>veloc                                                                                                                                                                                                                                                   | ity:            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                     | Output DeltatV results in Feet                                                                                                                                                                                                                           | sorte<br>from                                                                                                                                                                                                                                                        | d 1<br>tra      |
|                     | CMP is zero time trace                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                 |
|                     | Reduced offset 0.0 is valid trace with time 0.0                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                    |                 |
|                     | Enforce Monotonically increasing layer bottom velocity                                                                                                                                                                                                   | ty                                                                                                                                                                                                                                                                   |                 |
| <ul><li>✓</li></ul> | Suppress velocity artefacts                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |                 |
| <ul><li>✓</li></ul> | Process every CMP offset                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                 |
| . ✓                 | Prefer Average over minimum interface velocity                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                 |
|                     | Taper velocity steps at layer interfaces                                                                                                                                                                                                                 | ic                                                                                                                                                                                                                                                                   |                 |
| Ľ                   | Smooth CMP traveltime curves                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                 |
| Ľ                   | weign picks in CMP curves                                                                                                                                                                                                                                | Se                                                                                                                                                                                                                                                                   |                 |
|                     |                                                                                                                                                                                                                                                          | r                                                                                                                                                                                                                                                                    |                 |
|                     | Extra-large cell size                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                 |
|                     | Increase cell size                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                      |                 |
|                     | Decrease cell size                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                      |                 |
| ./                  | Extra-small cell size                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                 |
| Par                 | rameters for DeltatV method                                                                                                                                                                                                                              | Static first break corrections                                                                                                                                                                                                                                       |                 |
| CI                  | MP curve stack width [CMPs] 15                                                                                                                                                                                                                           | What static corrections                                                                                                                                                                                                                                              |                 |
| R                   | egression over offset stations                                                                                                                                                                                                                           | (  No static corrections applied                                                                                                                                                                                                                                     |                 |
|                     |                                                                                                                                                                                                                                                          | <ul> <li>Surface consistent corrections</li> </ul>                                                                                                                                                                                                                   |                 |
|                     |                                                                                                                                                                                                                                                          | CMP Gather datum specific                                                                                                                                                                                                                                            |                 |
| 1                   | <ul> <li>least squares</li> <li>least deviations</li> </ul>                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |                 |
| w                   | least squares C least deviations  /eathering sub-layer count 1                                                                                                                                                                                           | Determination of weathering velocity                                                                                                                                                                                                                                 |                 |
| W                   | least squares C least deviations     reathering sub-layer count 1     aximum valid velocity [m/sec.] 6000                                                                                                                                                | Determination of weathering velocity<br>C Copy v0 from Station editor                                                                                                                                                                                                |                 |
| W<br>M              | least squares C least deviations  /eathering sub-layer count 1 aximum valid velocity [m/sec.] 6000 Process all CMP curves                                                                                                                                | Determination of weathering velocity<br>C Copy v0 from Station editor<br>Automatically estimate v0                                                                                                                                                                   |                 |
| M                   | least squares C least deviations  /eathering sub-layer count 1  aximum valid velocity [m/sec.] 6000  Process all CMP c skip every 2nd                                                                                                                    | Determination of weathering velocity     O Copy v0 from Station editor     Automatically estimate v0     Station number intervals [station nos.]                                                                                                                     |                 |
| M                   | least squares C least deviations  /eathering sub-layer count 1 laximum valid velocity [m/sec.] 6000  Process all CMP c skip every 2nd  Shot & Recvr specing [Stations], CMPs/Recvr                                                                       | Determination of weathering velocity     O Copy v0 from Station editor     Automatically estimate v0     Station number intervals [station nos.] Weathering crossover                                                                                                | Ę               |
| M                   | least squares C least deviations  /eathering sub-layer count 1 laximum valid velocity [m/sec.] 6000  Process all CMP c skip every 2nd  Shot & Recvr spacing [Stations], CMPs/Recvr  4.0 1.0 3.1                                                          | Determination of weathering velocity<br>Copy v0 from Station editor<br>Automatically estimate v0<br>Station number intervals [station nos.]<br>Weathering crossover<br>Topography filter                                                                             | 5               |
| M<br>M              | least squares C least deviations  /eathering sub-layer count laximum valid velocity [m/sec.] 6000  Process all CMP c skip every 2nd Shot & Recvr spacing [Stations], CMPs/Recvr 4.0 1.0 3.1                                                              | Determination of weathering velocity     Copy v0 from Station editor     Automatically estimate v0     Station number intervals [station nos.]     Weathering crossover     Topography filter     Trace weighting in CMP stack [1/stat.nos.]-                        | 5               |
| M<br>M              | least squares C least deviations  /eathering sub-layer count laximum valid velocity [m/sec.] 6000  Process all CMP curves  process all CMP C skip every 2nd  Shot & Recvr spacing [Stations], CMPs/Recvr  4.0 1.0 3.1  Static Corrections Export Options | Determination of weathering velocity<br>C Copy v0 from Station editor<br>Automatically estimate v0<br>Station number intervals [station nos.]<br>Weathering crossover<br>Topography filter<br>Trace weighting in CMP stack [1/stat.nos.]<br>Inverse CMP offset power | 5<br>10<br>0.90 |

Fig. 13 : edit parameters in dialog *DeltatV*[*Interactive DeltatV* (left). Click button *Static Corrections* to edit more parameters (right). Check radio button *No static corrections applied* to completely disable static corrections. Increase *Inverse CMP offset power* from default 0.5 to 0.9 to give more weight to central CMP curve when stacking CMP curves. This increases the lateral resolution. Decreasing *Inverse CMP offset power* increases lateral smoothing.

| XTV Parameters dialog                                                                                                                                          |         |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| Enable Modified Dix layer inversion                                                                                                                            |         |  |  |  |  |  |
| Intercept time layer inversion                                                                                                                                 |         |  |  |  |  |  |
| ✓ Enable Intercept time layer inversion                                                                                                                        |         |  |  |  |  |  |
| Minimum velocity ratio : 1.01                                                                                                                                  | ratio   |  |  |  |  |  |
| Minimum velocity increase : 1.00                                                                                                                               | m/s     |  |  |  |  |  |
| Multiple adjacent Intercept time layer inversion           Image: Allow adjacent Intercept layer inversion           Overlying layer velocity step :         0 |         |  |  |  |  |  |
| Current layer velocity step : 25                                                                                                                               | percent |  |  |  |  |  |
| Prefer measured layer top velocity over inverted                                                                                                               |         |  |  |  |  |  |
| <u>G</u> radient model                                                                                                                                         |         |  |  |  |  |  |
| Accept Cancel                                                                                                                                                  |         |  |  |  |  |  |

-

Fig 14 : edit XTV parameters. Click button Layer model and button Accept.

Fig. 12 : DeltatV|DeltatV Settings. Check Suppress velocity artefacts to enforce continuous CMP sorted traveltime curves and filter out bad picks from traveltime curves.



Fig. 15 : edit menu WET Tomo|WET tomography Settings

To configure and run WET inversion and display 2D inversion output :

- select Grid|Surfer plot Limits. Click button Reset to grid. Navigate into profile subdirectory C:\RAY32\1\_1D\Nov18Regr4. Click on Nov18Regr4.GRD and click Open.
- check box Plot limits active. Set Min. elevation to 50m. Set Max. elevation to 100m. See Fig. 4.
- set Min. velocity to 500 m/s and Max. velocity to 6,000 m/s. Click OK.
- Grid | Image and contour velocity and coverage grids & ... \model \1\_1D.grd to obtain Fig. 9
- check WET Tomo|WET tomography Settings|Blank no coverage after last iteration.
- uncheck WET Tomo|WET tomography Settings|Blank below envelope after last iteration
- uncheck WET Tomo|WET tomography Settings|Scale wavepath width. See Fig. 15.
- check WET Tomo WET tomography Settings Scale WET filter height
- check WET Tomo|WET tomography Settings|Edit maximum valid WET velocity
- in WET Tomo WET velocity update set a to 0.5 and b to 10.0. Click OK. See Fig. 5.
- set WET Tomo Interactive WET tomography Ricker differentiation to -2 [Cosine-Squared]
- set Min. velocity to 150 m/s & Max. velocity to 6,000 m/s. See Fig. 6 (left).
- click radio button Conjugate Gradient
- set CG iterations (outer loop) to 20 and Line Search iters. (inner loop) to 2. See Shewchuk 1994.
- click button *Edit grid file generation* & set *Store each nth iteration only* : n = to 20. Click *OK*.
- click Edit velocity smoothing. Check Manual specification of smoothing filter . See Fig. 6 (right).
- set Half smoothing filter width to 3 columns & set Half smoothing filter height to 1 rows
- uncheck *Adapt shape of filter*. Set *Maximum velocity update* to 5%.
- set *Smooth nth iteration* : n = to 25.
- click *Gaussian* button. Set Used width of Gaussian to 5.5 sigma
- in latest version 3.36 click box No smoothing to completely disable WET smoothing. See Fig. 16.
- leave *Damping* at default 0.9 for Conjugate-Gradient method
- click Accept parameters and Iterate & check WET runs active. Edit as in Fig. 7 and click button OK.
- click button Start tomography processing to obtain Fig. 10 & 11
- in Surfer 16 click on menu View. Check Properties check box.
- in Surfer 16 click on *Custom colormap* button to right of *Colors label*. Click on *Load button*. Navigate into c:\RAY32\1\_1D\INPUT and select 1\_1D.CLR. Click Open&Apply&OK buttons.

Here some references to help file chapters and other relevant tutorials :

- for our *multiscale WET* inversion see updated <u>help file</u> chapter WET tomography processing
- see also our <u>SAGEEP11 tutorial</u> showing *Conjugate Gradient WET* inversion using 1D-gradient initial model for SAGEEP11 synthetic data forward-modeled over fault zone model

• see also our <u>2017 tutorial</u> showing *Steepest Descent WET inversion* using Plus-Minus layered refraction starting model for <u>NGU 2017</u> P1\_1 synthetic data

To restore database files and result files :

Subdirectories C:\RAY32\1\_1D\Nov18Regr4\WETRUN1 to ...\WETRUN10, ...\INPUT, ...\MODEL and ...\seis32\_Nov18Regr4 are available in this <u>.RAR archive</u>. Open the ...\WETRUN10\VELOIT62.PAR file e.g. with Windows Notepad editor to review *WET inversion* parameters used.

Use Rayfract<sup>®</sup> 3.36 command *Grid*|*Reset DeltatV and WET settings to .PAR file...* with file ...\Nov18Regr4\WETRUN10\VELOIT62.GRD to reset your profile's *DeltatV and WET inversion settings* to ...\Nov18Regr4\WETRUN10\VELOIT62.FAR .

Or quit our software via *File Exit* and copy all 33 seis32.\* database files from directory

C:\RAY32\1\_1D\seis32\_Nov18Regr4 into C:\RAY32\1\_1D directory in Windows Explorer. Now reopen your profile with *File|Open Profile...* and C:\RAY32\1\_1D\seis32\_DBD.

Summary, optimization of interpretation parameters :

NGU 2018 report with Fig. 4.5.1 showing *multirun WET inversion* of above synthetic model data is available at <u>http://www.ngu.no/upload/Publikasjoner/Rapporter/2018/2018\_015.pdf</u>. In above Fig. 6 & Fig. 7 we further improve our WET inversion settings compared to settings used for Fig. 4.5.1.

WET inversion shown in Fig. 10 using 10 WET runs with 20 Conjugate-Gradient iterations each and parameters shown in Fig. 6 and Fig. 7 took about 4 minutes on 2017 Apple iMac. This iMac comes with 2.3 GHz Intel Core i5 processor running 4 OpenMP threads under Windows 10 Pro 64-bit in Parallels Desktop 14 for Mac.

- the first interpretation attempt in Fig. 4.2.1 of above report apparently used too much *WET smoothing* e.g. *Used width of Gaussian* 3.0 sigma instead of our 5.5 sigma. This contributes to the horizontal smearing artefacts.
- in Fig. 4.2.1 *WET damping* was reset to 0.0. We use default damping setting for *Conjugate Gradient* of 0.9. The higher the damping the less need to smooth for *Conjugate Gradient* method. *WET smoothing* can destroy the tomogram resolution so WET smoothing needs to be minimized.
- we decrease *WET wavepath width* from 30% to 12% over 10 runs. In Fig. 4.2.1 *WET wavepath width* is decreased from 30% to 21% only. This probably also contributes to horizontal smearing artefacts. Per default wavepath width is decreased from 30% to 6% over 10 WET runs.
- we uncheck WET smoothing option Adapt shape of filter for better resolution
- we limit *Maximum velocity update* to 5% while in Fig. 4.2.1 *Maximum velocity update* is set to 15%. Limiting the maximum velocity update can help to better focus *WET inversion* especially with strong topography curvature.
- in Fig. 4.2.1 31 *WET iterations* per *WET run* are used. We use 62 WET iterations per WET run by increasing *CG iterations* from default 10 to 20.
- in Fig. 4.2.1 *Smooth nth iteration: n*= is set to 10 while we set this to 25 resulting in less smoothing and less smearing artefacts
- in Fig. 4.2.1 minimum/maximum *WET velocity* is limited to range 500 m/s .. 6,000 m/s. We extend this velocity range to 150 m/s .. 6,000 m/s. This helps WET to more easily find a good solution by allowing WET to explore a larger solution space.
- we uncheck option *WET Tomo|WET tomography Settings|Scale wavepath width* to prevent nearsurface velocity artefacts in the tomogram (unrealistic low-velocity anomalies below strong topography curvature) and to obtain more realistic imaging at tomogram bottom i.e. less horizontal smearing
- unchecking *WET* smoothing option *Smooth velocity update* can help to better focus WET inversion
- we have added a new check box *No smoothing* to our *WET Tomo*|*Interactive WET tomography*|*Edit WET smoothing* dialog in version 3.36 of our Rayfract® software. See below in Fig. 16. This option makes it easier to completely disable WET smoothing. Enabled *No smoothing* option overrides all other parameters in *Edit velocity smoothing* dialog except *Maximum velocity update* and *Damping*.

| Edit WET Wavepath Eikonal Traveltime Tomography Parameters    | Edit WET Tomography Velocity Smoothing Parameters      |
|---------------------------------------------------------------|--------------------------------------------------------|
| Specify initial velocity model                                | Determination of smoothing filter dimensions           |
| Select D:\ray32\1_1D\Nov18Regr4\NOV18REGR4.GRD                | C Full smoothing after each tomography iteration       |
| Stop WET inversion after                                      | C Minimal smoothing after each tomography iteration    |
| Number of WET tomography iterations : 62 iterations           | Manual specification of smoothing filter, see below    |
|                                                               | - Smoothing filter dimensions                          |
| 2.0 percent                                                   | Half smoothing filter width : 3 columns                |
| or RMS error does not improve for n = 20 iterations           | Half smoothing filter height : 1 and mus               |
| or WET inversion runs longer than 100 minutes                 |                                                        |
| WET regularization settings                                   | Suppress artefacts below steep topography              |
| Wavepath frequency : 60 Hz Iterate                            | Adapt shape of filter. Uncheck for better resolution.  |
| Picker differentiation [1/Gaussian 2/Gosina]                  | - Maximum mlative velocity update after each iteration |
|                                                               | Maximum velocity update : 5.00 percent                 |
| Wavepath width [percent of one period] : 2.5 percent [terate] |                                                        |
| Wavepath envelope width [% of period] : 0.0 percent           | Smooth after each nth iteration only                   |
| Min. velocity 150 Max. velocity 6000 m/sec.                   | Smooth nth iteration : n = 25 iterations               |
| Width of Gaussian for one period [sigma] : 3.0 sigma          | - Smoothing filter weighting                           |
|                                                               | Gaussian     O Uniform     Vo smoothing                |
| Gradient search method                                        |                                                        |
| C Steepest Descent ( Conjugate Gradient                       | Used width of Gaussian 5.5 sigma                       |
| Conjugate Gradient Parameters                                 | Uniform central row weight 1.0 [1100]                  |
| CG iterations 20 Line Search iters. 2                         | Smooth velocity update before updating tomogram        |
| Tolerance 0.001 Line Search tol. 0.0010                       | Smooth velocity update 🔽 Smooth last iteration         |
| Initial step 0.10                                             | Damping of tomogram with previous iteration tomogram   |
| Edit velocity smoothing Edit grid file generation             | Damping 0.900 Damp before smoothing                    |
| Start tomography processing Reset Cancel                      | Accept parameters Reset parameters                     |

Fig. 16 : WET Tomo|Interactive WET tomography|Edit velocity smoothing (right) offers new option **No smoothing**. Check this box to completely disable smoothing during WET inversion. Enabled No smoothing option overrides all other parameters in Edit velocity smoothing dialog (right) except Maximum velocity update and Damping.

When forward modeling traveltimes over ...\MODEL\1\_1D.GRD with our *Model*|Forward model traveltimes... we obtain an RMS error of 0.23 ms (Fig. 9). Ideally this error should be 0.0 ms when using the same grid cell size and Eikonal solver as NGU used for generating the 1\_1DASCII.ASC synthetic shots. We use the Eikonal solver and "active point process" as described by Lecomte et al. 2001 in Fig. 3.

DeltatV *apparent velocity* pseudo-sections can be compared to ER *apparent resistivity* pseudo-sections. See e.g. <u>https://pages.mtu.edu/~ctyoung/LOKENOTE.PDF</u> chapter 2.3 on page 8. Quote :

"The pseudosection is useful as a means to present the measured apparent resistivity values in a pictorial form, and as an initial guide for further quantitative interpretation. One common mistake made is to try to use the pseudosection as a final picture of the true subsurface resistivity." quoted from page 8 of LOKENOTE.pdf.

For processing of lines longer than the recommended minimum of 500m with our *DeltatV* method see <u>OT0608.pdf</u> & <u>GEOXMERC.pdf</u>. DeltatV and *Smooth inversion* using *1D-gradient starting model* obtained by <u>laterally averaging DeltatV</u> match each other nicely as shown in these .pdf tutorials.

On the following page we show multiscale Conjugate-Gradient WET inversion using our default 1D-gradient starting model obtained with *Smooth invert WET with 1D-gradient initial model* command.



Fig. 17 : fail-safe laterally averaged 1D-gradient starting model obtained with *Smooth invert*[*WET with 1D-gradient initial model*. The DeltatV 1D velocity profiles are laterally averaged (<u>Sheehan 2005</u>). Force topography smoothing over 2 stations (Fig. 21). Surfer plot limits as in Fig 24. Extrapolate starting models and tomograms over 32 stations in *Header*[*Profile* (Fig. 25). Red dots are shot points. Grey dots are receivers.







Fig. 19 : multiscale Conjugate-Gradient WET inversion. Output of 10<sup>th</sup> WET run shown. Starting model for first run is 1D-gradient initial model shown in Fig. 17. WDVS enabled at 1200Hz. Discard WET smoothing after forward modeling (Fig. 22). 10 Conjugate-Gradient WET runs with 20 Conjugate-Gradient iterations per run. Ricker differentiation -2 : Cosine-Squared WET update weighting. Minimized WET smoothing (Fig. 23). Surfer plot limits as in Fig 24.



Fig. 20 : WET wavepath coverage plot obtained with Fig. 19. Unit is wavepaths per pixel.

| Replace gradient velocity profile              |                                                            |     |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------|-----|--|--|--|--|--|
| Force limits of starting model grid            |                                                            |     |  |  |  |  |  |
| Force grid limits                              | Force grid limits Reset limits to grid Reset top elevation |     |  |  |  |  |  |
| Grid bottom elevation [m]                      | n elevation [m] Grid top elevation [m]                     |     |  |  |  |  |  |
| Left limit of grid [m] Right limit of grid [m] |                                                            |     |  |  |  |  |  |
| Replace computed velocity gradient             | with user velocity prof                                    | ile |  |  |  |  |  |
| Replace velocity active                        |                                                            |     |  |  |  |  |  |
| Select velocity profile                        |                                                            |     |  |  |  |  |  |
| -Force running average smoothing of            | topography                                                 |     |  |  |  |  |  |
| Force topography smoothing                     |                                                            |     |  |  |  |  |  |
| Forced filter width [stations] 2               |                                                            |     |  |  |  |  |  |
| Force velocity for constant-velocity st        | arting model                                               |     |  |  |  |  |  |
| Force constant velocity                        |                                                            |     |  |  |  |  |  |
| Forced velocity [m/sec.]                       |                                                            |     |  |  |  |  |  |
| OK Cancel                                      | Reset                                                      |     |  |  |  |  |  |

Fig. 21 : Smooth invert|Custom 1D-gradient velocity profile . Force topography smoothing over 2 stations.

| Edit WDVS (Zelt & Chen 2016)                                             |                |          |  |  |  |  |
|--------------------------------------------------------------------------|----------------|----------|--|--|--|--|
| Edit parameters for wavelength-dependent velocity smoothing              |                |          |  |  |  |  |
| wise WDVS for forward modeling of traveltimes                            |                |          |  |  |  |  |
| ✓ fast WDVS : less accurate mapping of scan line nodes to grid nodes     |                |          |  |  |  |  |
| I add nodes once only with overlapping scan lines for velocity averaging |                |          |  |  |  |  |
| add all velocity nodes within WDVS area with rad                         | lius of one wa | velength |  |  |  |  |
| pad WDVS area border with one grid cell                                  |                |          |  |  |  |  |
| WDVS frequency                                                           | 1200.00        | [Hz]     |  |  |  |  |
| Angle increment between scan lines                                       | 7              | [Degree] |  |  |  |  |
| Regard nth node along scan line                                          | 3              | [node]   |  |  |  |  |
| Parameters for Cosine-Squared weighting function (C                      | hen and Zelt   | 2012)    |  |  |  |  |
| a : Cosine argument power                                                | 1.000          | [power]  |  |  |  |  |
| b : Cosine-Squared power                                                 | 1.000          | [power]  |  |  |  |  |
| Modify WET smoothing mode : discard after forward modeling               |                |          |  |  |  |  |
| OK Cancel Reset                                                          |                |          |  |  |  |  |

Fig. 22 : *Model|WDVS Smoothing*. Enable WDVS@1200Hz. Discard WET smoothing and WDVS smoothing after forward modeling.

Here is the DropBox link to .RAR archive with profile database files for Fig. 19 : <u>https://www.dropbox.com/scl/fi/rcfsexvls2o8s6qa71vov/seis32\_Feb13\_2024\_CGWET.rar?rlkey=tcg0svi4s</u> y7poiqzqorhhymmm&dl=0

Here is the DropBox link to .RAR archive with GRADTOMO subdirectory obtained with Fig. 19 : <u>https://www.dropbox.com/scl/fi/ll4mcuqm0c1pfq5umhjdr/1\_1D\_GradTomo\_CGWET\_WDVS-1200Hz\_Feb13\_2024.rar?rlkev=4spmve73unfhvyowachig45f6&dl=0</u>

| Edit WET Wavepath Eikonal Traveltime Tomography Parameters   | Edit WET Tomography Velocity Smoothing Parameters          |
|--------------------------------------------------------------|------------------------------------------------------------|
| Specify initial velocity model                               | Determination of smoothing filter dimensions               |
| Select D:\ray32\1_1D\GradTomo_Feb3_2024\GRADIENT.GRD         | C Full smoothing after each tomography iteration           |
| Stop WET inversion after                                     | C Minimal smoothing after each tomography iteration        |
| Number of WET tomography iterations : 62 iterations          | (     Manual specification of smoothing filter, see below; |
| or RMS error gets below 2.0 percent                          | Smoothing filter dimensions                                |
| v or RMS error does not improve for n = 50 iterations        | Half smoothing filter width : 1 columns                    |
| or WET inversion runs longer than 100 minutes                | Half smoothing filter height : 1 grid rows                 |
| WET regularization settings                                  | Suppress artefacts below steep topography                  |
| Wavepath frequency :     60.00     Hz     Iterate            | Adapt shape of filter. Uncheck for better resolution.      |
| Ricker differentiation [-1:Gaussian,-2:Cosine] : -2 times    | Maximum relative velocity update after each iteration      |
| Wavepath width [percent of one period] : 3.0 percent Iterate | Maximum velocity update : 5.00 percent                     |
| Wavepath envelope width [% of period] : 0.0 percent          | Smooth after each nth iteration only                       |
| Min. velocity : 150 Max. velocity : 6000 m/sec.              | Smooth nth iteration : n = 25 iterations                   |
| Width of Gaussian for one period [SD] : 3.0 sigma            | Smoothing filter weighting                                 |
| Gradient search method                                       | ● Gaussian C Uniform                                       |
| C Steepest Descent  © Conjugate Gradient                     | Used width of Gaussian 10.0 [SD]                           |
| Conjugate Gradient Parameters                                | Uniform central row weight 1.0 [1100]                      |
| CG iterations 20 Line Search iters. 2                        | Smooth velocity update before updating tomogram            |
| Tolerance 0.001 Line Search tol. 0.0010                      | Smooth update 🔽 Smooth nth 🔽 Smooth last                   |
| Initial step 0.10 Steepest Descent step                      | Damping of tomogram with previous iteration tomogram       |
| Edit velocity smoothing Edit grid file generation            | Damping [01] 0.200 Damp before smoothing                   |
| Start tomography processing Reset Cancel                     | Accept parameters Reset parameters                         |

Fig. 23 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right).

As shown by (Watanabe 1999, Fig. 4) for crosshole surveys, it is not possible to reliably image seismic subsurface velocity at a resolution much smaller than one wavelength of dominant frequency of the first break pulse. E.g. with 100 Hz and basement velocity of 4,000 m/s, one wavelength is 4000/100 = 40m. In case of bad or noisy picks and recording geometry errors, resolution may not be better than two wavelengths. For refraction surveys, resolution at bottom and edges of tomogram is further reduced, because here rays and wavepaths are aligned predominantly parallel to each other (White 1989). In our above tutorial we are imaging fault zones not wider than 10m @ 4,000 m/s. This is far below one wavelength of 40m @ 100 Hz.

Our Rayfract® software offers multiple interpretation methods and parameters to explore the nonuniqueness of the solution space. It is the user's job to sufficiently explore the solution space with our methods and varying parameters, and to find an appropriate combination of methods and parameters for each individual data set. This choice may be guided by a-priori information e.g. from boreholes or other geophysical methods.

| dit Surfer plot limits                  |                | Edit Profile                        |               |                  |
|-----------------------------------------|----------------|-------------------------------------|---------------|------------------|
| - Plot Limits                           |                | Line ID 11D                         | Time o        | ofAcquisition    |
| Plot limits active Use data limits      | ОК             | Line type Refraction spread/li      | ne 🔻 Date     |                  |
| Min. offset -63.929 [m]                 | Cancel         | Job ID                              | Time          |                  |
| Max. offset 184.871 [m]                 | Reset          | Instrument                          | Time o        | of Processing    |
| Min. elevation 50.000 [m]               | Reset to grid  | Client                              | Date          |                  |
| Max elevation 100.000 [m]               | Redisplay grid | Company                             | Time          |                  |
| Min. velocity 500 [m/sec.]              |                | Observer                            | Units         | meters           |
|                                         |                | Note                                | sort 🖌        | As acquired      |
| Max. velocity 6000 [m/sec.]             |                |                                     |               |                  |
| Plot Scale                              |                | Station spacing [m]                 | 2.00000       | thanded coor     |
| Proportional XY Scaling                 |                | Min. horizontal separation [%]      | 25            |                  |
| Page unit centimeter. Uncheck for inch. |                | Profile start offset [m]            | 0.0000        |                  |
| X Scale length 6.000 [inch]             |                | Force grid cell size                | Cell size [m] |                  |
| Y Scale length 2.000 [inch]             |                | Force first receiver station number | for profile   |                  |
| 1                                       |                | First receiver [station number]     | 0 🗌 For       | rce first receiv |
| -Color Scale                            |                | Extrapolate starting models and W   | /ET tomograms |                  |
| Adapt color scale                       |                | Extrapolate [station spacings]      | 32 🔽 Ext      | rapolate tomo    |
| Scale height 2.050 [inch]               |                | Add borehole lines for WET tomo     | graphy        |                  |
| Velocity interval 500 [m/sec.]          |                | Borehole 1 line Select              |               |                  |
| Coverage interval 20 [paths/size]]      |                | Borehole 2 line Select              |               |                  |
|                                         |                | Borehole 3 line Select              | ,             |                  |
| Receiver labeling                       |                | Deschole d line Object              |               |                  |
| First station 0 [station no.]           |                |                                     | 1             |                  |
| Station interval 6 [station no.]        |                | OK Cancel                           | Reset         |                  |
| [etallerined]                           |                |                                     |               |                  |

Fig. 24 : Grid|Surfer plot Limits



We thank Dr. Georgios Tassis for making available above NGU 2018 report and synthetic data & models.

For an objective comparison of tomographic refraction analysis methods see <u>Zelt et al. 2013</u> (JEEG, September 2013, Volume 18, Issue 3, pp. 183–194).

For an overview of our WDVS (Wavelength-Dependent Velocity Smoothing; Zelt and Chen 2016) see these publications :

Zelt, C. A. and J. Chen 2016. Frequency-dependent traveltime tomography for near-surface seismic refraction data, Geophys. J. Int., 207, 72-88, 2016. See https://dx.doi.org/10.1093/gji/ggw269 and https://www.researchgate.net/publication/305487180\_Frequency-dependent traveltime tomography for near-surface seismic refraction data.

**Rohdewald S.R.C. 2021a**. Improving the resolution of Fresnel volume tomography with wavelengthdependent velocity smoothing, Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings : 305-308. https://doi.org/10.4133/sageep.33-169 . Slides at https://rayfract.com/pub/SAGEEP%202021%20slides.pdf

**Rohdewald S.R.C. 2021b**. Improved interpretation of SAGEEP 2011 blind refraction data using Frequency-Dependent Traveltime Tomography, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4214, https://doi.org/10.5194/egusphere-egu21-4214

For an objective comparison of tomographic refraction analysis methods see these publications :

**Zelt, C.A., Haines, S., Powers, M.H. et al. 2013**. Blind Test of Methods for Obtaining 2-D Near-Surface Seismic Velocity Models from First-Arrival Traveltimes, JEEG, Volume 18(3), 183-194. https://scholarship.rice.edu/handle/1911/72113?show=full . https://www.researchgate.net/publication/267026965 .

Hiltunen, D. R., Hudyma, N., Quigley, T. P., & Samakur, C. 2007. Ground Proving Three Seismic Refraction Tomography Programs. Transportation Research Record, 2016(1), 110–120. https://doi.org/10.3141/2016-12 . https://www.researchgate.net/publication/242072938 .

Sheehan J.R., Doll W.E. and Mandell W.A. 2005a. An Evaluation of Methods and Available Software for Seismic Refraction Tomography. Journal of Environmental and Engineering Geophysics, volume 10, pp. 21-34. ISSN 1083-1363, Environmental and Engineering Geophysical Society. JEEG March 2005 issue. https://dx.doi.org/10.2113/JEEG10.1.21 . https://rayfract.com/srt\_evaluation.pdf . https://www.researchgate.net/publication/242159023 .

## More references :

**W. Doll et al. 2010**. Short Course Notes : Processing of Seismic Refraction Tomography Data. SAGEEP 2010 meeting in Keystone Colorado. <u>https://rayfract.com/SAGEEP10.pdf</u>.

**H. Gebrande 1986**. CMP-Refraktionsseismik. Paper presented (in German) at Mintrop Seminar / Uni-Kontakt Ruhr-Universitaet Bochum, Expanded abstract "Seismik auf neuen Wegen", pp. 191-205.

**H. Gebrande and H. Miller 1985**. Refraktionsseismik (in German). In: F. Bender (Editor), Angewandte Geowissenschaften II. Ferdinand Enke, Stuttgart; pp. 226-260. ISBN 3-432-91021-5.

**Bruce S. Gibson, Mark E. Odegard and George H. Sutton 1979.** Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship. Geophysics, volume 44, pp. 185-194. https://dx.doi.org/10.1190/1.1440960.

**I. Lecomte, H. Gjoystdal, A. Dahle and O.C. Pedersen 2000**. Improving modeling and inversion in refraction seismics with a first-order Eikonal solver. Geophysical Prospecting, volume 48, pp. 437-454. https://dx.doi.org/10.1046/j.1365-2478.2000.00201.x .

Rohdewald S.R.C. 2023. Rayfract manual. https://rayfract.com/help/rayfract.pdf .

Rohdewald S.R.C. 2006. Rayfract short manual. https://rayfract.com/help/manual.pdf .

**Gerard T. Schuster and Aksel Quintus-Bosz 1993.** Wavepath eikonal traveltime inversion : Theory. Geophysics, volume 58, pp. 1314-1323. <u>https://dx.doi.org/10.1190/1.1443514</u>. <u>https://csim.kaust.edu.sa/files/short.courses/bp.2011/ppt/wet.pdf</u>

**Jonathan Richard Shewchuk 1994**. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. <u>https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf</u>.

**J. Whiteley et al. 2020**. Landslide monitoring using seismic refraction tomography - The importance of incorporating topographic variations. Engineering Geology 2020. https://www.researchgate.net/publication/339280163

Copyright © 1996-2024 Intelligent Resources Inc. All rights reserved.