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Summary  
Using Norwegian Geological Survey (NGU) synthetic travel time data obtained from NGU fault 
zone models, we show improved Seismic Refraction Tomography (SRT) results and model 
interpretation. Our approach is based on the Wavepath Eikonal Traveltime inversion (WET) 
method (Schuster 1993). We obtain a 1D-gradient starting model by laterally averaging pseudo-
2D DeltatV velocity vs. depth profiles obtained below each Common Mid-Point (CMP) to remove 
DeltatV artefacts (Sheehan 2005). We then implement a multiscale Conjugate-Gradient WET 
inversion approach. This approach improves the resolution of P-wave velocity tomograms by 
iteratively decreasing the WET wavepath width. Decreasing the wavepath width, i.e. Fresnel 
volume, corresponds to increasing the effective frequency in our tomographic method. We use 
Wavelength-Dependent Velocity Smoothing (WDVS; Zelt 2016) and WET to partially model 
finite-frequency signal propagation effects. Our results show considerable improvement in 
imaging of lateral velocity variation and of modeled fault zones compared to our default Smooth 
inversion method. We obtain a final tomogram with a lateral resolution similar to the lateral 
resolution reached using the Plus-Minus layered refraction method starting model. We also 
show that our default 1D-gradient starting model can work even with steep topography. The not 
laterally averaged pseudo-2D DeltatV starting model (Gebrande 1985, 1986) shows strong 
velocity artefacts with strong refractor curvature (Sheehan 2005) or strongly undulating 
topography (Tassis 2018). 
 

 
 
Fig. 1: Forward-modeled traveltime curves (solid) obtained using NGU fault zone model (Fig. 3). 

Inverted curves (dashed) obtained by multiscale WET inversion (Fig. 4). 
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Fig. 2: 1D-gradient starting model used for Fig. 4. We laterally average the pseudo-2D DeltatV 

velocity vs. depth profiles obtained below each CMP (Sheehan 2005) to suppress DeltatV 
artefacts. 

 

 
 
Fig. 3: The true model built and made available by NGU (Tassis 2018). The red triangles are the 

shot points. The grey dots are the receivers. The unit is meters per second. 
 

 
 
Fig. 4: Multiscale Conjugate-Gradient WET inversion using 1D-gradient starting model (Fig. 2). 

Wavelength-Dependent Velocity Smoothing (WDVS; Zelt 2016) enabled at 1200Hz. 

 
Fig. 5: WET wavepath coverage plot obtained with Fig. 4. Unit is wavepaths per grid cell. 
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Results 
 
Our results (Rohdewald 2024a) show considerable improvement in imaging of lateral velocity 
variation and of modeled fault zones when using a multiscale Conjugate-Gradient WET 
inversion approach compared to our default Smooth inversion method. Using our default 
laterally averaged 1D-gradient starting model and WDVS smoothing, we obtained a final 
tomogram with a lateral resolution similar to the lateral resolution reached using the Plus-Minus 
layered refraction method starting model (Tassis 2018). We also show that our 1D-gradient 
starting model can work even with steep topography. The not laterally averaged pseudo-2D 
DeltatV starting model (Gebrande 1985, 1986) shows strong velocity artefacts with strong 
refractor curvature (Sheehan 2005) or strongly undulating topography (Tassis 2018). 
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